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2Escuela de Informática, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile

Received 23 February 2001; accepted 1 May 2002

ABSTRACT: An integral approach is presented to strengthen the teaching and learning

processes in the environment of the undergraduate course Numerical Analysis (NA) for

engineering, examining tha advantages of combining the symbolic and numeric paradigms. In

particular, the methodology is illustrated with the iterative methods: Gauss–Seidel (GS)

and Conjugated Gradient (CG), for the numeric solution of Linear Systems (LS). The computer

tools MATLAB and MAPLE are used in a pedagogic model that requires the explicit definition

of Prospective Learnings and Activities of Learning. �2002 Wiley Periodicals, Inc. Comput Appl Eng

Educ 10: 51�58, 2002; Published online in Wiley InterScience (www.interscience.wiley.com.); DOI 10.1002/

cae.10008
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INTRODUCTION

The undergraduate curriculum in engineering has

traditionally included a course of Numerical Analysis

(NA), which is often located at the end of the mathe-

matical line and at the beginning of courses in

sciences of the engineering, constituting in a bridge

between the basic sciences and the sciences of the

engineering.

The NA is part of the applied mathematics, and

it is intimately related with scientific computing. For

this reason its teaching has incorporated for several

decades the use of a programming language, such as,

Fortran IV, Fortran 77, Fortran 90, C, Pascal, etc . . . ,
for the computational implementation of the numeric
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algoriths. However, the generation of such computa-

tional tools as MAPLE, DERIVE, MATHEMATICA,

MATLAB, MATHCAD, to mention some, has moti-

vated a deep revision of the traditional teaching ways

in engineering, allowing the students to concentrate

more on the design, and less on routine calculation

procedures.

In this article, an integral approach is presented to

strengthen the teaching and learning processes in the

environment of the undergraduate course on NA for

engineering, examining the advantages of combining

the symbolic and numeric paradigms [1]. In the first

section, we review the importance of the NA in the

making of an engineer. In the second section, we

present the iterative methods: Gauss–Seidel (GS) and

Conjugated Gradient (CG), for the numeric solution

of Linear Systems (LS). Methods of the type CG, are

not usually incorporated in undergraduate courses,

however, we show that the merged use of MAPLE and

MATLAB allow the intutive understanding of their

theoretical foundations and their practical use in the

solution of LS [2]. In the third section, we presented

a teaching model and learning that it incorporates

varied learning experiences for the students based

on the use of MAPLE and MATLAB. The excellent

thing is that the use of such tools as MAPLE and

MATLAB turn out not to be useful alone just to

strengthen the teaching of the discipline but also as

learning instruments.

NUMERICAL ANALYSIS
AND ENGINEERING

Accrediation Board for Engineering and Technology,

U.S. (ABET) developed Engineering Criteria 2000 [3].

The criteria state that engineering programs must

demonstrate that their graduates have, among others,

an ability to apply knowledge of mathematics, science

and engineering, an ability to design and conduct ex-

periments as well as to analyze and interpret data, and

an ability to design a system, component, or process.

The importance of an appropriate mathematical for-

mation is clearly established [4].

The Siam Report [5] shows that in non-academic

organizations, the mathematics is present in such

activities as: research and development of mathema-

tical tools and algorithms, creation and support of

mathematical and computational techniques asso-

ciated with a specific product or service, and consult-

ing or modeling for internal or external customers.

The mathematical functions of greatest value were

characterized by managers as modeling and simula-

tion, mathematical formulation of problems, algo-

rithm and software development, problem-solving,

statistical analysis, verifying correctness, and analysis

of accuracy and reliability. We also highlight in

Table 4 of Ref. [5] (indicates selected associations

between areas of mathematics and applications en-

countered in the site visits) the Numerical Analysis

turned out to be essential in all the applications.

It clearly establishes the relevance of evaluating

the use of computational resources in the environment

of the teaching and of the learning of the NA, speci-

fically, the iterative solution of LS.

ITERATIVE METHODS FOR SOLVING
LINEAR SYSTEMS

In recent years, much research have focused on the

efficient solution of large sparse or structures linear

systems using iterative methods [6–8].

Small matrices, say with dimension 3 or 30, may

arise directly with more or less arbitrary entries in

scientific problems as representations of the rela-

tions between three forces in a structure, perhaps, or

between 30 species in a chemical reaction. Large

matrices, by contrast, usually arise indirectly in

the discretization of differential or integral equations.

The most obvious structure of a large matrix is spar-

sity, i.e., preponderance of zero entries. For example,

a finite difference discretization of a partial dif-

ferential equation may lead to a matrix of dimension

n¼ 100,000 with only 10 non-zero entries per row.

This kind of structure is readily exploited by the

iterative methods. The methods described are most

often useful for very large sparse or structured ma-

trices, for which direct methods are too costly in terms

of computer time and/or storage.

The relative chapter to the iteratives methods to

solve LS in a standard course of NA considers the

methods of Jacobi, Gauss–Seidel, SOR, and possibly

SSOR [9,10]. On the other side, the numeric solution

of partial differential equations requires the use of

modern iterative methods, such as, Preconditioned

Conjugate Gradients Method (PCG), BiConjugate

Gradients Method (BICG), BiConjugate Gradients

Stabilized Method (BICGSTAB), Conjugate Gradi-

ents Squared Method (CGS), Generalized Minimum

Residual Method (GMRES), Minimum Residual

Method (MINRES), Quasi-Minimal Residual Method

(QMR), and Symmetric LQ Method (SYMMQL),

(see directory sparfun in MATLAB), that are not

treated in the undergraduate course of NA. We post-

ulate the incorporation of the method CG, to the

standard course of NA, like an extrance door to the

modern iterative methods.
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Iterative Method of Gauss–Seidel

The problem is to solve the LS: Ax
~
¼ b

~
,where A is an

n� n non-singular matrix and b
~
is a given n-vector.

If A¼LþDþU, where, L is the strict inferior

triangular matrix of A, D is the diagonal matrix of

A and U is the strict upper triangular matrix of A,
the LS: Ax

~
¼ b

~
is equivalent to (LþDþU) x

~
¼ b
~
,

i.e., (LþD)b
~
¼ �Ux

~
þ b
~
, i.e., x

~
¼ �(LþD)�1Ux

~
þ

(LþD)�1b
~
. Starting from this last equality is defined

the iterative succession of GS:

x
~
ðlþkÞ ¼ �ðLþ DÞ�1

Ux
~
ðkÞ þ ðLþ DÞ�1

b
~
; k

¼ 0; 1; 2 . . .

which is convergent if A is symmetric and definite

positive.

Program 1, which is a m-file of MATLAB, solve

the LS: Ax
~
¼ b
~
, by mean of Gauss–Seidel method.

Program 1
function x¼ gsðA; bÞ
D¼ diagðdiagðAÞÞ
U¼ triuðAÞ � D

L¼ trilðAÞ � D

x0 ¼ zerosðsizeðbÞÞ;
x ¼ x0

xb ¼ x� 999

n ¼ 0

while normðx� xb; inf Þ > 1e� 30

xb ¼ x

x ¼ �invðLþ DÞ�U�xþ invðLþ DÞ�b
n ¼ nþ 1

if n > 300 break end
end
end

Conjugate Gradient Method

The content of this section is based on Ref. [10].

We consider the problem of find x
~
, such that, Ax

~
¼ b
~
,

if AT ¼ A and x
~
TAx

~
> 0; x

~
6¼ 0. The Fundamental

Lemma enunciates the fundamental property that

allows to build the CG method and related.

Fundamental Lemma. IfA is symmetric and positive

definite, the problem to solve Ax
~
¼ b

~
is equivalent

to the problem of minimizing the quadratic form

qðx
~
Þ ¼ h x

~
;Ax

~
i � 2hx

~
; b
~
i, where h:; :i is a scalar

product defined by hx
~
; y
~
i ¼ x

~
Ty
~
:

Proof. The behavior of the function qðx
~
Þ is ex-

amined along a ray unidimensional. Consider x
~
þ tv

~
,

with x
~
; y; v

~
vectors and t a scalar. A direct com-

putation shows that for all scalar t: qðx
~
þ t v

~
Þ ¼

qðx
~
Þ þ 2thv

~
;Ax

~
� b
~
i þ t2hv

~
;Av

~
i, because A is sym-

metrical. On the other hand, the t value that gives us

the minimum point is; evaluating qðx
~
þ t̂ v

~
Þ in t̂,

q ðx
~
þ t̂ v

~
Þ ¼ qðx

~
Þ � hv

~
; b
~
�Ax

~
i2=hv

~
;Av

~
i. The calcu-

lation previous sample that when happening of x
~to x

~
þ t̂ v

~
there is always a reduction in the value of

q(x), unless v be orthogonal to the residual, i.e.,

hv
~
; b
~
�Ax

~
i¼ 0, starting from that which the equi-

valence presented in the Fundamental Lemma is

deduced easily.

The previous proof suggests the following

iterative method to solve Ax
~
¼ b

~
: x
~
ðlþkÞ ¼ x

~
ðkÞþ

tkv
~
ðkÞ, where, tk ¼ hv

~
ðkÞ; b

~
�Ax

~
ðkÞi=hv

~
ðkÞ;Av

~
ðkÞi:

A natural election of search direction v
~

ðkÞ is

minus gradient of qðx
~
Þ evaluate in x

~
ðkÞ, which points in

the direction of the residual r
~

ðkÞ ¼ b
~
�Ax

~
ðkÞ. There-

fore, the residuals generated in each iteration could be

chosen as search addresses. This first possibility gives

this way origin to those called Methods of Steepest

Descent. However, this type of methods are rarely

used in this class of problem due to their slowness.

The conjugated gradient method belongs to a family

whose members share the strategy of minimizing qðx
~
Þ

along a succession of rays. The search direction that

characterize the CG method are specified in the

Fundamental Definition.

Fundamental Definition. (a) If A is a matrix n� n

definite positive, a set of vectors fu
~
ð1Þ; u

~
ð2Þ; . . . ; u

~
ðnÞg

it is said A-orthonormal if and only if hu
~
ðiÞAu

~
ðiÞi ¼

�ij; 1 � i; j � n.

(b) If A is a matrix n� n definite positive, a set of

vectors fv
~
ð1Þ; v

~
ð2Þ; . . .g it is said A-orthogonal if and

only if hv
~
ðiÞ; Av

~
ðjÞi ¼ 0; i 6¼ j.

Notice that of a A-orthogonal system, it is

possible to obtain a A-orthonormal system by way of

a normalization process given by u
~
ðiÞ ¼ v

~
ðiÞ= k v

~
ðiÞ kA,

where k x
~
k2A¼ hx

~
; x
~
iA ¼ hx

~
;Ax

~
i ¼ x

~
TAx

~
.

The CG method is preferable to the gaussian

elimination when A it is large and sparse. Theoreti-

cally the algorithm CG will give us the solution of the

system Ax
~
¼ b

~
in n steps at the most. We should not

expect from a iterative method to obtain the solution

with absolute precision after n steps. In fact, it is

expected to obtain a satisfactory answer in less than n

steps for extremely big systems. In well conditioned

problems, the number of necessary iterations, for that

the CG method converges satisfactorily, can be much

smaller than the order of the system. These con-

siderations are based in the following Fundamental

Theorem.

Fundamental Theorem. Suppose A is an n� n

positive definite matrix.
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a) Let be fu
~
ð1Þ; u

~
ð2Þ; . . . ; u

~
ðnÞg an A-orthonormal

system.

Define x
~
ðiÞ ¼ x

~
ði�1Þ þ hb

~
�Ax

~
ði�lÞ; u

~
ðiÞiu

~
ðiÞ; 1 �

i � n, where, x
~
ð0Þ is an arbitrary point of <n.

Then Ax
~
ðnÞ ¼ b

~
.

b) Let be fv
~
ð1Þ; v

~
ð2Þ; . . . ; v

~
ðnÞg anA-orthognal set of

vectors not null.

Define x
~
ðiÞ ¼ x

~
ði�1Þ þ

h b
~
�Ax

~
ði�1Þ; v

~
ðiÞi

hv
~
ðiÞ;Av

~
ðiÞi v

~
ðiÞ; 1� i�n;

where, x
~
ð0Þ is an arbitrary point of <n. Then

Ax
~
ðnÞ ¼ b

~
.

Another distinctive property of the CG method

is that the residuals form a system orthogonal in

the ordinary sense, that is to say, h r
~
ðiÞ; r

~
ðjÞi ¼ 0;

i 6¼ j.

In the Table 1, Algorithm 1, [10], is a formal

version of the CG method that incorporates the

previously established characteristics. On the other

hand, the Algorithm 2, [10], is a modification of the

Algorithm 1 that allows an implementation more

efficient computational, while the third column, titled

Program 2, [2], is a m-file of MATLAB starting from

the Algorithm 2.

MODEL OF TEACHING AND LEARNING

The Model of Teaching and Learning consists of the

definition (to-priori) of Prospective Learnings and

the design of Activities of Learning. The Prospective

Learning express the capabilities and competitions

that is desired that the students achieve. They guide

the pedagogic process and they give a direction to

the learning process. They are determinant to define

the evaluation approaches. The Learning Activities

are actions and processes that the students have to live

to achievement of the Prospective Learnings. In this

sense such tools as MAPLE and MATLAB are

powerful resources for the design and implementation

of Activities of Learning.

Contents

The considered topics are the GS and CG methods

in the numeric solution of system of lineal equation

context. Previously, the students have to know Linear

Algebra.

Prospective Learnings

We propose the following prospective learnings:

1) They distinguish conceptually between direct

and iterative methods to solve LS.

2) They know the definition and properties of the

following iterative methods: Jacobi, Gauss–

Seidel, SOR, SSOR and CG. However, in this

article we will only make mention to GS and

CG methods.

3) They understand the conceptual foundations of

the family of methods of the type Conjugated

Gradient.

4) They outline problems that involve the iterative

solution of LS.

5) They apply iterative procedures to solve LS.

Table 1 Conjugate Gradient Method

Algorithm 1 Algorithm 2 Program 2

input x
~
ð0Þ;M; a; x

~
; eps input x;M;A; b; eps; del function [output]¼ cg(input)

r
~
ð0Þ ¼ b

~
� Ax

~
ð0Þ r ¼ b� Ax r ¼ b� A�x

v
~
ð0Þ ¼ r

~
ð0Þ v ¼ r v ¼ r

output 0
~
; x
~
ð0Þ; r

~
ð0Þ c ¼ hr; ri c ¼ r0�r

for k ¼ 0; 1; . . . ;M � 1 do for k ¼ 1; . . . ;M do for k ¼ 1 : M
if v
~
ð0Þ ¼ 0

~
then stop if hv; vi1=2 < del then stop if sqrtðv0vÞ < delta break end

tk ¼ hr
~
ðkÞ; r

~
ðkÞi=hv

~
ðkÞ;Av

~
ðkÞi z ¼ Av z ¼ A�z

x
~
ð1þkÞ ¼ x

~
ðkÞ þ tkv

~
ðkÞ t ¼ c=hv; zi t ¼ c=ðv0�zÞ

r
~
ð1þkÞ ¼ r

~
ðkÞ � tkAv

~
ðkÞ x ¼ xþ tv x ¼ xþ t�v

if k r
~
ð1þkÞ k22<eps then stop r ¼ r � tz r ¼ r � t�z

Sk ¼ hr
~
ð1þkÞ; r

~

ð1þkÞi=hr
~
ðkÞ; r

~
ðkÞi d ¼ hr; ri d ¼ r0 �r

v
~
ð1þkÞ ¼ r

~
ð1þkÞ þ Skv

~
ðkÞ if d2 < eps then stop if d:^2 < eps break end

output 1þ k; x
~
ð1þkÞ; r

~
ð1þkÞ v ¼ r þ ðd=cÞv v ¼ r þ ðd=vÞ�v

end c ¼ d c ¼ d

output k; x; r end

end

In the first line of the Program 2 replace output by x; k; r and input by a; b; xð0Þ;M; eps; delta.
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Naturally, these prospective learnings can be modified

and/or adapted.

Learning Activities

Each Learning Activities suggested can be imple-

mented, adapted to a special reality, or substituted by

others that are considered more pertinent.

1. Given the system Ax
~
¼ b

~
; n ¼ 2; 3; . . . the

student should verify: if A is symmetirc and positive

definite. It should also build explicitly the form

quadratic qðx
~
Þ ¼ hx

~
;Ax
~
i � 2hx

~
; b
~
i, to obtain the point

which possesses their minimum value, and finally

to compare this point with the exact solution of the

sytem Ax
~
¼ b

~
; n ¼ 2; 3; . . .

Example: The exact solution of LS: ½2
1
1
3
�½x1
x2
� ¼ ½�1

3
� is

given by x1 ¼ �6=5; x2 ¼ 7=5, the following instruc-

tions in MAPLE (Worksheets 1) they allow to

generate the quadratic form qðx
~
Þ ¼ hx

~
; Ax

~
i � 2hx

~
; b
~
i

and to obtain its minimum value.

Worksheets 1
> with (linalg):
> A:¼matrix (2, 2, [2, 1, 1, 3]);
> b:¼matrix (2, 1, [x1, x2]);
> x:¼matrix (2, 1, [x1, x2]);
> q(x):¼ simplify(evalm(transpose(x) & A &
*x�2* transpose(x) & *b));

> readlib(extrema):
> extrema(q(x),{}, {u,v},‘s’);
> with (plots):
> plot3d(q(x),x1¼�5..5, x2 =0..5);
>minimize(q(x));

Another system on which you could apply a

similar worksheets to the Worksheets 1 is formed for

A ¼
2 0 �1

�2 �10 0

�1 �1 4

2
64

3
75; b

~
¼

1

�12

2

2
64

3
75

Notice that the exact solution is given for x1 ¼ x2 ¼
x3 ¼ 1, while the application of the Worksheets 1 to

this system hurtle as a result that the minimum value

of qðxÞ, it is reached in x1 ¼ 3=2; x2 ¼ 1; x3 ¼ 1.

However, notice that the main matrix, A, is not

symmetrical and it is not positive definite, in fact,

it possesses a negative eigenvalue. This activity for

the learning allows the student to value the importance

of the hypotheses in the mathematical theorems.

2. The systems idealized mass-spring as having

numerous applications in the whole engineering.

One has an arrangement of 4 springs in series that

are compressed with a force F. In the balance, the

following LS of forces can be developed defining the

interrelations among the springs:

�k1 � k2 k2 0 0

k2 �k2 � k3 k3 0

0 k3 �k3 � k4 k4

0 0 �k4 k4

2
6664

3
7775

x1

x2

x3

x4

2
6664

3
7775

0

0

0

F

2
6664

3
7775:

The following Worksheets 2 of MAPLE allow to solve

the system in exact form:

Worksheets 2
> eq[1]:¼ k[2]*(x[2]�x[1])¼ k[1]*x[1];
> eq[2]:¼ k[3]*(x[3]�x[2])¼ k[2]*(x[2]�x[1]);
> eq[3]:¼ k[4]*(x[4]�x[3])¼ k[3]*(x[3]�x[2]);
> eq[4]:¼F¼ k[4]*(x[4]�x[3]);
> solve({eq[1], eq[2], eq[3], eq[4]}, {x[1], x[2],
x[3], x[4]});

Table 2 shows the exact solution obtained with

MAPLE.

Notice that one of the advantages of having the

exact solution resides in the possibility of varying the

constants of the springs freely together with the value

of the force F. Together with the above-mentioned

specific values can be assigned to the constants and to

solve the LS using a direct method, GS and/or CG.

3. Build a program in MATLAB for the iterative

methods: GS and CG.

Example: See Programs 1 and 2 of this article, for

the GS and CG methods, respectively. Notice the

didactic value that possesses the correspondence

among the Program 2 and the Algorithm 2, which

arises as consequence of using MATLAB. This

correspondence allows a soft transition among the

mathematical foundations (Algorithm 1) and the

computational implementation (Program 2).

4. Test the Programs 1 and 2 in LS generated by

the numeric solution of Partial Differential Equations.

Example:Consider the problem that consist of finding

a function uðx; yÞ, such that

@2uðx; yÞ
@x2

þ @2uðx; yÞ
@y2

¼ xþ y; for all ðx; yÞ 2 D

¼ fðx; yÞ 2 <2 : 0 < x < 2

and 1 < y < 2:5g;

Table 2 Exact Solution

�1 �2 �3 �4

F
k1

Fðk1þk2Þ
k1k2

Fðk1k2þk2k3þk1k3Þ
k1k2k3

Fðk1k2k3þk1k2k4þk2k3k4þk1k3k4Þ
k1k2k3k4
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and uðx; yÞ ¼ xy, for all ðx; yÞ, in the boundary of D.

It is possible to obtain a discrete version of

@2uðx;yÞ
@x2 þ @2uðx;yÞ

@y2 ¼ xþ y, if the approximation for-

mulas
@2uðx;yÞ
@x
~
2 ffi uðxþh;yÞ�2uðx;yÞþuðx�h;yÞ

h2
; and @2uðx;yÞ

@y2 ffi
uðx;yþhÞ�2uðx;yÞþuðx;y�hÞ

h2
; are used.

The evaluation of this discreet outline, with h ¼ 1=2,
it generates the LS, Ax

~
¼ b

~
; n ¼ 6, where,

A ¼

4 �1 0 �1 0 0

�1 4 �1 0 �1 0

0 �1 4 0 0 �1

�1 0 0 4 �1 0

0 �1 0 �1 4 �1

0 0 �1 0 �1 4

2
666666664

3
777777775
and

b
~
¼

1:875

3:25

8:625

1

1:625

5:25

2
666666664

3
777777775

A simple application of the command solve of

MAPLE allows us to obtain, at least, 19 digits of

the exact solution : x
~
¼

1321=966

3233=1288

6667=1932

524=483

635=322

5155=1932

2
666666664

3
777777775

¼

1:3674948240165631470

2:510093167701863540

3:4508281573498964803

1:0848861283643892340

1:9720496894409937888

2:6682194616977225673

2
666666664

3
777777775
:

The application of the Program 1 (Gauss–Seidel)

generates the integer and 15 decimals (format long of

MATLAB) of the exact solution after 40 iteratons,

while the Program 2 (Conjugated Gradient) generates

the same thing in 6 iterations. Notice that the 6

iterations required by the CG method illustrate

the result fundamental content in the Fundamental

Theorem.

Similarly, if h ¼ 1=10, GS needs 301 iterations while

CG needs 95, where the order of LS is n ¼ 266.

5. Make an empiric comparison among the

methods GS and CG if the LS is not well conditioned.

Example: Solve the LS: Ax
~
¼ b

~
, where aij ¼ 1

iþjþ1
;

bi ¼ 1
3
�n

j¼1aij; 1 � i; j � n, using the GS and CG

methods. The exact solution is xi ¼ 1=3; i ¼1; . . . ; n:
The Program 3 (m-file of MATLAB), generates the

matrix A and the vector b
~
, for all n.

Programa 3
function [A,b]¼ hilbert(n)
for i¼ 1: n;

for j¼ 1: n;
A (i,j)¼ 1/(iþjþ1);
end

end
for i¼ 1: n;

b(i)¼ (1/3)*sum(A(i,:));
end
b¼ b’;
The Sequence 1, implemented in the line of commands

of MATLAB, solves the LS for n ¼ 20, using GS and

CG methods, and graph both solutions:

Sequence 1
> [A,b]¼ hilbert(20);
> x0¼ zeros (20,1); M¼ 500; eps¼ 1e�30;¼ delta
¼ 1e�30;
> [x, k, r]¼ cg (A, b, x0, M, eps, delta);
> y¼ gs (A, b); t¼ 1:20;
> plot(t, x, ‘o’, t, y , ‘--’)

It is requested the student that interprets the obtained

graph.

6. Consider the problem of electric engineering

that consists on determining the electrostatic potential

V ¼ Vðx; yÞ, such that, �ð@
2Vðx;yÞ
@x2 þ @2Vðx;yÞ

@y2 Þ ¼ rho
epsilon

,

on the annular region D ¼ fðx; yÞ 2 <2 : =x2 þ y2 <
1 ^ x2 þ y2 > 1=3g, yVðx; yÞ ¼ gðx; yÞ, along the

interior and external boundary of D, where, epsilon

is the coefficient of dielectricity and rho is the space

charge density.
The command: spy(numgrid (‘A’, 50)), of

MATLAB, generates Figure 1, which shows the

annular region with the points in which will approach

the electrostatic potential

Suppose that rho,epsilon and g(x,y), are such that,

b
~
¼ ðbiÞ; bi ¼ 1; 8i ¼ 1 : 1252 for the LS Ax

~
¼ b

~where, A is the matrix of a five-point finite dif-

ference approximation of Laplace’s equation on the

annular region D. The command of MATLAB:

A¼ delsq(numgrid(‘A’,50)) it generates A. The

command spy(A) generates Figure 2, i.e., sparsity

patron of A. The order of A is n ¼ 1252.
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The sequence 2, implemented in the line of

commands of MATLAB, solves the LS, using CG,

methods:

Sequence 2
>A¼ delsq (numg rid(‘A’, 50)); b¼ ones(size
(A, 1),1);

> x0¼ zeros (size (b)) ; M¼ 500; eps¼ 1e�30;
delta¼ 1e�30;

> [x, k, r]¼ cg (A, b, x0, M, eps, delta);

Activities of Evaluation

The evaluation is considered part of the learning

process. It should provide the student and the pro-

fessor of the necessary feedback as relating to con-

tinue, to correct, and to guide and future activities.

CONCLUSIONS

In this article, we have considered a wide spectrum

of learning experiences, supported by computational

tools of last generation, in the environment of the

course NA, belonging to most of the engineering

curriculum. We have demonstrated how the combined

use of MAPLE and MATLAB strengthens the process

of teaching-learning, also allowing the learning of

contents that usually are not treated at undergraduate

level, as for example, Conjugates Gradient Methods.

A close examination of our article and implementa-

tion reveals that alternative solutions in conventional

programming language such as Fortran or C would

require considerable effort. Most of the devises here

have originated from courses given by the authors.

MAPLE and MATLAB code, written by the authors,

were provided to the students in the form of hardcopy.

We plan to apply the methodology proposed to other

areas of the NA.
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